An Effective Big Data Supervised Imbalanced Classification Approach for Ortholog Detection in Related Yeast Species
نویسندگان
چکیده
Orthology detection requires more effective scaling algorithms. In this paper, a set of gene pair features based on similarity measures (alignment scores, sequence length, gene membership to conserved regions, and physicochemical profiles) are combined in a supervised pairwise ortholog detection approach to improve effectiveness considering low ortholog ratios in relation to the possible pairwise comparison between two genomes. In this scenario, big data supervised classifiers managing imbalance between ortholog and nonortholog pair classes allow for an effective scaling solution built from two genomes and extended to other genome pairs. The supervised approach was compared with RBH, RSD, and OMA algorithms by using the following yeast genome pairs: Saccharomyces cerevisiae-Kluyveromyces lactis, Saccharomyces cerevisiae-Candida glabrata, and Saccharomyces cerevisiae-Schizosaccharomyces pombe as benchmark datasets. Because of the large amount of imbalanced data, the building and testing of the supervised model were only possible by using big data supervised classifiers managing imbalance. Evaluation metrics taking low ortholog ratios into account were applied. From the effectiveness perspective, MapReduce Random Oversampling combined with Spark SVM outperformed RBH, RSD, and OMA, probably because of the consideration of gene pair features beyond alignment similarities combined with the advances in big data supervised classification.
منابع مشابه
An Effective Method for Imbalanced Time Series Classification: Hybrid Sampling
Most traditional supervised classification learning algorithms are ineffective for highly imbalanced time series classification, which has received considerably less attention than imbalanced data problems in data mining and machine learning research. Bagging is one of the most effective ensemble learning methods, yet it has drawbacks on highly imbalanced data. Sampling methods are considered t...
متن کاملCost Sensitive Online Multiple Kernel Classification
Learning from data streams has been an important open research problem in the era of big data analytics. This paper investigates supervised machine learning techniques for mining data streams with application to online anomaly detection. Unlike conventional machine learning tasks, machine learning from data streams for online anomaly detection has several challenges: (i) data arriving sequentia...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملSurvey on Perception of People Regarding Utilization of Computer Science & Information Technology in Manipulation of Big Data, Disease Detection & Drug Discovery
this research explores the manipulation of biomedical big data and diseases detection using automated computing mechanisms. As efficient and cost effective way to discover disease and drug is important for a society so computer aided automated system is a must. This paper aims to understand the importance of computer aided automated system among the people. The analysis result from collected da...
متن کاملImbalanced Learning
With the continuous expansion of data availability in many large-scale, complex, and networked systems, it becomes critical to advance raw data from fundamental research on the Big Data challenge to support decision-making processes. Although existing machine-learning and data-mining techniques have shown great success in many real-world applications, learning from imbalanced data is a relative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015